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Mesenchymal stem cells or multipotent mesenchymal stromal cells (both referred to as MSC) have been shown in some studies
to have a beneficial effect on myocardial recovery after infarct. Current strategies for MSC delivery to heart involve intravenous,
intraarterial, and intramuscular delivery. Different routes of MSC delivery and a lack of knowledge of the mechanisms that MSC
utilise to migrate in vivo has most likely led to the marked variations in results that have been found. This review aims to summarise
the current knowledge of MSC migratory mechanisms and looks to future methods of MSC manipulation prior to delivery in order
to enhance MSC migration and engraftment.

Copyright © 2009 Katarina Kollar et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Cardiovascular disease is currently a leading cause of death
worldwide [1] indicating that global primary prevention
and effective secondary treatments are urgently needed.
Advances have been made in the treatment and management
for cardiovascular disease but despite this, cannot directly
reverse the disease process, that is, replace lost cardiomy-
ocytes and/or the myocardial scar with new fully functional
myocardial cells.

MSC are multipotent cells that are capable of differen-
tiating into cells of the mesodermal lineage. In vivo, MSC
are present as a rare population in the bone marrow and
possibly other tissues such as placenta, adipose tissue, and
blood vessels (as perivascular cells) [2–5]. MSC are expanded
in vitro before use and thus the properties attributed to MSC
are of these ex vivo expanded cells. MSC also have highly
immunosuppressive properties [4] and there is evidence
that ex vivo expanded MSC can engraft within tissues in
many settings including myocardial damage after myocardial
infarction (AMI) [6].

2. Mesenchymal Stem Cells

MSC were first described by Friedenstein et al. [7] as an
adherent, fibroblast-like population that could regenerate

rudiments of normal bone in vivo [7–9]. MSC are located
within the stroma of the bone marrow and represent
∼0.0001% of nucleated bone marrow cells [10, 11]. When
isolated from various tissues [12–15] and expanded ex vivo,
these cells have been shown to differentiate into cell types
of mesenchymal lineage, including bone, cartilage, muscle,
adipose tissue, and bone marrow stroma [10, 16, 17]. Until
recently, MSC had not been shown to be true stem cells,
that is, cells capable of serial transfer between animals with
the ability to reconstitute a fully functioning tissue of origin.
However, two groups have recently shown that ex vivo
expanded MSC are capable of such behaviour [14, 18, 19].
Ex vivo expanded MSC have been characterised by flow
cytometry with a variety of markers. Some of these, including
CD73, CD90, and CD105 [10, 20, 21] are indicative (but not
definitively so) of MSC phenotype. Also, MSC do not express
typical haematopoietic antigens including CD45, CD34, and
CD14 [22].

MSC are an attractive cellular therapeutic candidate due
to their relative ease of isolation using standard culture media
with bovine serum [30]. In the murine system contaminating
haematopoietic cells are not readily lost using the standard
adherence protocol [20], but enrichment of mouse MSC
can be achieved by using flow cytometry to selection cells
based on Sca-1+, CD45− [31]. A lack of definitive phenotypic
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Table 1: Characteristics of bone marrow-derived MSC: expression of specific antigens, cytokine receptors and adhesion molecules, as well
as production of cytokines and matrix molecules.

Expression on MSC Designation Reference

Characteristic cell surface antigens CD73, CD90, CD105, CD166, STRO-1 [17, 22–24]

Cytokines and growth factors
IL- 1α, IL-1β, IL-6, IL-7, IL-8, IL-11, IL-12, IL-14, and
IL-15 LIF, SCF, Flt-3 ligand, GM-CSF, G-CSF, M-CSF,
VEGF

[17, 25]

Cytokine receptors and growth factor
receptors

IL-1R (CD121), IL-2R (CD25), IL-3R (CD123), IL-4R
(CD124), IL-6R (CD126), IL-7R (CD127), LIFR, SCFR,
G-CSFR, IFNγR, TNFIR, TNFIIR, TGFβIR, TGFβIIR,
bFGFR, PDGFR, EGFR

[10, 22, 26, 27]

Adhesion

Integrins: α1, α2, α3, α4, α5, αv, β1, β3, β4, ICAM-1
(CD54), ICAM-2 (CD102), VCAM-1 (CD106),
ALCAM-1 (CD166), LFA-3 (CD58), L-selectin
(CD62L), endoglin (CD105), CD44, VLA-4

[10, 22, 28, 29]

properties and isolation techniques, especially for murine
MSC may have made it difficult to compare MSC derived
from different laboratories. Several investigators have tried to
resolve this problem and several antibodies have been utilised
to facilitate the prospective isolation of MSC such as the
STRO-1 mAb [32]. Recently, Battula et al. [33] described a
panel of monoclonal antibodies with superior selectivity for
MSC, including the monoclonal antibodies W8B2 against
human mesenchymal stem cell antigen-1 (MSCA-1) and
CD56. CFU-F assays showed that MSC can be enriched with
MSCA-1 and CD56 and have the ability to differentiate into
mesodermal lineage. Selection of MSC using nerve growth
factor receptor (NGFR) antibodies may also be used [34–36].
NGFR has also been described on the earliest component of
BM stroma in developing human foetal epiphyseal bone [37,
38] and in a small percentage of cells from the adherent layer
of BM cultures, thus suggesting that NGFR antibodies also
may stain primitive MSC. However, the use of a definitively
phenotyped MSC population remains an unmet goal in MSC
research.

3. MSC Engraftment in AMI

In the laboratory, animal models of AMI have been widely
used to study therapies aimed at improving the recovery
from ischaemic organ damage. Several preclinical studies and
clinical trials have reported that MSC attenuate maladaptive
left ventricular (LV) remodeling, and preserve and/or pro-
mote recovery of pump performance after myocardial infarc-
tion [39–41]. The mechanism underpinning these effects
has been variously attributed to de novo cardiomyogenesis,
and/or neoangiogenesis [40]. A growing body of evidence
suggests, however, that the therapeutic effects of MSC trans-
plantation primarily result from indirect stimulation (often
termed paracrine) of neovascularisation and protection from
ischemia-induced apoptosis [40, 41].

Intramyocardial injection has been the most widely
used delivery route for transplanting MSC into infarcted
myocardium [42]. Although this technique guarantees
localised delivery to the inflamed tissue, it has restricted

clinical applicability because it is invasive, and can lead
to cardiac arrhythmias. Systemic delivery of MSC provides
a minimally invasive and clinically acceptable alternative,
and has been investigated using various animal models of
myocardial infarction [43–47]. The major problem with this
delivery route seems to be loss of MSC in the vasculature,
mostly in the lungs and liver and generally only a small pro-
portion of injected MSC are found in the ischaemic damaged
myocardium [43, 46]. Despite this, Nagaya et al. [44], showed
that intravenous (IV) infusion of MSC 3 hours after AMI
resulted in a reduced infarct size and a slight improvement in
LV function one month later. After 24 hours, approximately
3% of injected MSC were found engrafted, mostly in the
border zone of infarcted myocardium. Similarly, Jiang et al.
[45] demonstrated that systemic infusion of MSC 3 hours
after AMI resulted in migration to inflamed myocardium,
and produced a reduction in infarct size and improvements
in LV function. These results confirmed the findings of
Boomsma et al. [47] who in a mouse model of AMI
delivered MSC 1 hour after coronary artery occlusion, and
demonstrated functional improvements relative to vehicle-
injected controls at 14 days. Cheng et al. [42] demonstrated
significant cell engraftment in rats receiving MSC infusion 24
hours after AMI, with efficiency of engrafted MSC doubled,
relative when CXCR4-overexpressing MSC were used. While
they found no effect on infarct size, MSC were shown to
attenuate postinfarct systolic function. Two studies have
directly compared intracoronary and intravenous routes of
MSC delivery after AMI [43, 49]. While both found that
the majority of cells were trapped in the lung regardless of
delivery route, higher numbers of MSC were observed in
the peri-infarct zone after intracoronary injection. Neither
study measured the effect of this improved engraftment on
organ function. Entrapment of cells in the lungs is possibly
due to their relatively large size of ex vivo expanded MSC.
However, others have shown that MSC are capable of efficient
migration to injured tissues after IV delivery [44, 50]. This
suggests that MSC expresses specific receptors or ligands
to facilitate trafficking, adhesion, and infiltration to sites of
injury.
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Figure 1: Schematic illustration of the molecular mechanisms used by (a) leukocytes for homing to the bone marrow and (b) differences
with MSC.

4. Migratory Mechanisms Utilised by MSC

The well-documented migration of leukocytes into inflamed
tissues is probably a good paradigm to compare MSC
migration from the blood stream into inflamed tissues. The
capillary endothelium (excluding bone marrow) does not
constitutively express E-, L-, and P-selectins [48]. However,
upon activation, these cell adhesion molecules are rapidly
presented at the surface of endothelium, initiating leukocyte
rolling. Chemokines released during inflammation induce
firm adhesion and chemoattraction of leukocytes, and the
type of chemokine released can determine the subtypes of
leukocytes that migrate [51, 52]. Integrins are normally in
a low affinity state, but can be switched to a high affinity
state by the action of chemokines [53]. Firm adhesion is
followed by diapedesis across endothelial tight junctions
and basement membrane allowing movement into the
extracellular matrix (ECM) of the local tissue stroma. Here
cells adhere to ECM components such as hyaluronic acid,
laminin, collagen, and fibronectin via integrins, CD44, and
other cell adhesion molecules. Migration through the ECM
is facilitated by ECM-degrading enzymes such as the matrix
metalloproteases (MMPs) which free bound chemokines
allow movement along the chemokine gradient within the
local tissue (Figure 1). Although this process represents a
likely paradigm for MSC migration, all of the molecular
mediators and chemotactic signals that guide MSC to
appropriate microenvironments are yet to be fully identified
[29].

5. Role of Chemokines in
Acutely Infarcted Myocardium

Chemokines comprise a family of small (8–14 kDa) highly
basic proteins with similar tertiary structure that play a
critical role in basal and inflammatory leukocyte locomotion
and trafficking [54–56]. In addition to effects on cell loco-
motion, certain chemokines are capable of eliciting a variety
of other responses affecting leukocyte adhesion, activation,
degranulation, mitogenesis, and apoptosis. Furthermore,

chemokines have a wide range of effects on many different
cell types beyond the immune system, including endothelial
cells, fibroblasts, smooth muscle cells, neurons, and epithelial
cells [57–59]. Chemokine induction is an important mech-
anistic response to myocardial injury during inflammation.
In myocardial infarcts, cellular necrosis triggers several
chemokine-inducing pathways which are regulated through
free radical generation, nuclear factor-κB activation, TNF-α
release, and complement activation [60, 61].

Studies using animal models of AMI have demonstrated
that many chemokines are up-regulated in the infarcted heart
and suggest they play a role in regulating postinfarction
inflammatory response [62]. Chemokines released after
myocardial ischaemia include CCL2 (MCP-1), CCL3 (MIP-
1α/), CCL4 (MIP-1β), CXCL8 (IL-8), CXCL10 (IP-10),
and CXCL12 (SDF-1) [60]. Chemokine receptors, including
CXCR4, which are known to be involved in the migration
of leukocytes across the endothelium have been reported
to be expressed on MSC, however, this expression appears
to be variable (Table 2). This may be due to regulation of
chemokine receptors through internalisation from the cell
surface and degradation within the cytoplasm. It may also
be a feature of ex vivo highly expanded cells [63, 64].

Freshly isolated MSC express surface CXCR4 and this
has been suggested to be of importance for MSC migration
[65]. However, some have shown that CXCR4 expression
is markedly reduced during ex vivo expansion leading to
decreased migration of the cells towards CXCL12 [65, 66].
Furthermore it has been shown that CXCR4 surface receptor
expression was present on few if any ex vivo cultured human
MSC, although intracellular CXCR4 expression could be
detected [29, 67]. The importance of CXCR4 in MSC
migration has been questioned [68]. The study by Ip et
al. [68] suggested that MSCs do not require CXCR4 for
myocardial migration and engraftment. It should be noted
that this study utilised direct intramyocardial injection rather
than intravenous delivery [68]. Therefore, it may be the
lack of surface expression of CXCR4 by MSC that leads to
low efficiency of migration towards CXCL12. This has been
further supported by the observation that enforced surface
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Table 2: Expression of chemokine receptor mRNA by human and murine bone marrow derived MSC as determined by microarray or
qRT-PCR and flow cytometry.

Chemokine receptor mRNA Cell surface protein Intracellular protein

Human Mouse Human Mouse Human Mouse

CCR1 − + +/− ND + ND

CCR2 − − − −
CCR3 − − − − + −
CCR4 − − ND ND ND ND

CCR5 + + − − − +

CCR6 − − ND ND ND ND

CCR7 − + ND − ND +

CCR8 + + +/− − − ND

CCR9 − + ND − ND ND

CCR10 + + − − +/− ND

CCR11 + + +/− ND − ND

CXCR1 − − ND ND ND ND

CXCR2 − − ND ND ND ND

CXCR3 − − − ND + ND

CXCR4 − + − − + +

CXCR5 − − + ND ND

CXCR6 − + + + + ND

CXCR7 ND − ND ND ND ND

CX3CR1 − − ND ND ND ND

−, not detected; +/−, weak expression, +, strong expression; ND, no data

expression of CXCR4 leads to increased MSC engraftment
and functional recovery after AMI [49, 69, 70]. Shi et al. [65]
investigated induced upregulation of CXCR4 in migration of
Flk1+ MSC derived from human fetal bone marrow. They
showed that CXCR4 expression can be rapidly induced on
the cell surface after stimulation with the cytokines Flt-3
ligand, stem cell factor (SCF), interleukin (IL)-6, hepatocyte
growth factor (HGF), and IL-3. Upregulation of CXCR4
increased in vivo migration capacity to CXCL12 and homing
to the bone marrow of irradiated NOD/SCID mice. Finally,
we would like to suggest that a further confounder to CXCR4
mediated migration of MSC is that MSC constitutively
produce CXCL12 (which may be a reflection of their previous
bone marrow stromal role). Although it is assumed that
the endogenous CXCL12 is not affecting MSC migration
[71], it may be possible that it actually interferes both with
their surface expression of CXCR4 and with their migration.
Hence, at least in terms of CXCL12-mediated migration of
MSC, ex vivo manipulated MSC maybe more suitable for the
treatment where intravenous delivery and migration of MSC
is required.

6. Adhesion Molecules and Signalling Pathways

The molecular mechanism underlying migration of cells
from the blood stream involve a complex multistep pro-
cess required to cope with shear forces associated with
transendothelial migration. MSC have been shown to express
various adhesion molecules including CD106 (VCAM-
1), CD54 (ICAM-1), CD50 (ICAM-3), CD166 (ALCAM),

CD44, and integrins including α1, α2, α3, α4, α5, αv, β1,
β3, and β4, many of which are thought to be involved in
migration (Table 1) [72].

Selectin receptors are required for initial rolling in
the capillaries and consist of glyoproteins with fucoslyated
glycan side chains, for example, PSGL-1, CD34 [73, 74].
Cells cannot adhere to selectins without the coexpression
of glycosyl-transferases required to generate sialyl Lewis-
X (sLeX) core-2 O-glycans (reviewed [74]). In particular,
fucosyl transferase (FUT)-7 is essential to generate functional
selectin receptors as its loss leads to inactivation of P- and
E-selectin receptors [75]. There has been some evidence
to support selectin-mediated adhesion by MSC [76], but
others have shown that MSC do not express FUT-4 or FUT-
7 and do not functionally bind to E- or P-selectin in vitro,
indicating that no selectin binding by MSC is possible [29].
Furthermore, artificial enzymatic addition of sLex on MSC
using recombinant FUT6 has been shown to induce selectin
binding and increased homing of MSC to the bone marrow
[77].

Firm adhesion, which follows rolling in capillaries is
achieved via integrins. However, this may be limited in
MSC (especially BM-derived MSC), which have low levels
of VLA-4 (CD49d) and murine MSC do not express VLA-
4 at all [29]. Thus interaction with VCAM-1 on endothelium
(allowing firm adhesion) does not appear to be possible.
Therefore, the exact manner of MSC firm adhesion to
endothelium (and therefore emigration from capillaries)
remains unclear but it is possible that high expression
of CD44 by MSC may allow sufficient adhesion to the
endothelium [78]. Herrera et al. [79] investigated how
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interactions between CD44 and HA influence exogenous
MSC migration to the kidneys after acute renal failure. These
cells were isolated from wild-type or CD44-null mice. The
data showed that the expression of CD44 was important
for MSC migration to inflamed tissue. MSC that have had
CD44 blocked by a neutralizing antibody also had reduced
capacity to reach the damaged kidneys. Furthermore, in vitro
studies supported the involvement of CD44 in chemotaxis
toward purified HA, as CD44-null MSC or MSC transfected
to express a defective variant of CD44 did not migrate.

The role of MMPs has also been studied in MSC
migration. When matrix metalloproteinase-2 (MMP-2) was
blocked with a neutralising antibody, in vitro transendothe-
lial migration was impaired [80]. De Becker et al. [80]
also showed that blocking MMP-2 with an inhibitory
antibody or siRNA leads to increased expression of tissue
inhibitor metalloproteinase-3 (TIMP-3). Interestingly, the
migratory capacity of MSC was strongly affected in both
studies by the level of culture confluence, where significant
decrease of migration occurred for cells cultured at higher
concentrations. MMP-2 can be activated at the cell surface by
membrane-type matrix metalloproteinase-1 (MT1-MMP)
[81]. This activation has been shown to be important
in human MSC invasion through basement membranes,
where MT1-MMP was upregulated upon activation of Wnt
signalling. Wnt signalling regulates other basic stem cell
features, such as self-renewal of intestinal epithelial stem cell
[82] or haematopoietic stem cells [83].

Considerable research has been devoted to the effectors
of stem cell migration and engraftment. However, rather less
attention has been paid to the signal transduction pathways
eliciting these mechanisms. In particular, the molecular
signalling cascades governing MSC migration is of major
importance, with the Wnt signalling pathway being asso-
ciated with migration and invasion [84]. The activation of
the Wnt signal transduction pathway by Wnt3a-conditioned
medium was shown to stimulate MSC proliferation, while
retaining pluriotency [85]. Neth et al. utilised siRNA to
knock down expression of β-catenin, a transcriptional
activator for the Wnt signalling pathway, which resulted in
down-regulation of Wnt target genes cyclin D1 and MT1-
MMP. Reduced proliferation rate and diminished invasive
capacity of MSC were observed, showing that Wnt signalling
is involved in MSC migration.

Several growth factors (GFs) have also been reported to
be involved in MSC migration. One such GF involved in
MSC (and epithelial cell) migration is Hepatocyte growth
factor (HGF) [86]. Studies have demonstrated that human
MSCs constitutively express the HGF ligand c-met and
can migrate in response to HGF [86]. Thus, controlled
activation of Wnt signalling or HGF ligand may enhance
MSC migration and invasion when tissue regeneration is
needed but on the other hand it may negatively affect
characteristic stem cell features such as self-renewal.

7. Conclusions

The ability of MSC to specifically migrate to and engraft
in injured tissue is still under intense scrutiny. Migration

studies of MSC to sites of acute myocardial infarction
have highlighted the importance of chemokines, however,
specific mechanisms remain poorly understood. Substantial
challenges remain in order to optimise MSC migration
and fulfill its promise as an easily intravenously delivered
therapeutic in clinical practice. Until in vivo MSC phenotype
with respect to migratory molecules can be controlled
and/or standardised, inconsistent results will persist. Basic
research is still required to optimise the techniques by
which these cells are isolated, cultured, and manipulated in
vitro to improve their migration, engraftment, survival, and
function following administration to patients after severe
acute myocardial infarction.
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